BrainTrawler Lite: Navigating through a multi-scale multi-modal gene transcriptomics data resource through a lightweight user interface

Bianca Burger¹, Tobias Peherstorfer¹, Sophia Ulonska¹, Florian Gangelberger^{1,2}, Dominic Kargel^{3,4}, Simone Lucato¹, Bader Al-Hamdan¹, Marvin Kleinlehner¹, Wulf Haubensak^{3,4}, Katja Bühler¹

¹Biomedical Image Informatics, VRVis Center, Vienna, Austria ²Global Computational Biology and Digital Sciences, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria ³Department of Neuronal Cell Biology, Medical University of Vienna, Vienna, Austria ⁴Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria

Objective

Joint exploration of behavior, genes and brain structure holds the promise to provide a better understanding of neural circuits than unimodal data analyses. Several consortia provide extensive data resources of different modalities [1-3]. To allow a joint exploration of such existing resources in a common space, we extended BrainTrawler [4], our web-based visual analytics frame work for exploration of neurobiological data of human and mouse, with a selection of publicly available gene expression and connectivity datasets [5]. For an easy navigation through this unique data collection, we additionally created BrainTrawler Lite, a lightweight user interface, which provides a visual overview of gene expression information available across resources.

Data in BrainTrawler¹⁾

Data type	b)			
a)	7x single cell RNA sequencing ²⁾	12 x single חנ sequen		
Gene		1x bulk RNA se		
expression	1x in situ hybridization	1x micro		
Connectivty	Allen Brain Axonal Projections	WU-Minn HCP Connec		

- 1) Full data list: https://braintrawler.vrvis.at/docs/data_sources.html 2) Dataset collection is representative of the whole brain of the respective
- species.
- Image taken from: https://pngimg.com/image/100728
- Image taken from: https://getdrawings.com/cute-mouse-drawing b)

Access

https://braintrawler.vrvis.at/

References

[1] Lein, E. S., et al. (2007). *Genome-wide atlas of gene expression in the adult mouse brain*. Nature, 445(7124), 168–176. [2] Zeisel, A., Hochgerner, H., Lönnerberg, P., Johnsson, A., Memic, F., van der Zwan, J., Häring, M., Braun, E., Borm, L. E., La Manno, G., Codeluppi, S., Furlan, A., Lee, K., Skene, N., Harris, K. D., Hjerling-Leffler, J., Arenas, E., Ernfors, P., Marklund, U., & Linnarsson, S. (2018). Molecular Architecture of the Mouse Nervous System. Cell, 174(4), 999–1014.e22. [3] Song, L., Pan, S., Zhang, Z., Jia, L., Chen, W. H., & Zhao, X. M. STAB: a spatio-temporal cell atlas of the human brain. Nucleic acids research 49 (D1). 2021. https://doi.org/10.1093/nar/gkaa762 [4] Ganglberger F, Swoboda N, Frauenstein L, Kaczanowska J, Haubensak W, Bühler K. BrainTrawler: A visual analytics framework for iterative exploration of heterogeneous big brain data. Computers & Graphics. 2019. 10.1016/j.cag.2019.05.032.

Trawler

[5] Ganglberger F, Kargl D, Toepfer M, Hernandez-Lallement J, Lawless N, Fernández-Albert F, Haubensak W, Bühler K. BrainTACO: An Explorable Multi-Scale Multi-Modal Brain Transcriptomic And Connectivity Data Resource. Communications Biology 7, 730 (2024). https://doi.org/10.1038/s42003-024-06355-7

Bhattacherjee 2019 Bhattacherjee 2019 Aetro Excitatory L.MO L.MO 5 14-12-12-12-12-12-12-12-12-12-12-12-12-12-			Yac,2021 L_MO 12 12 10			Gouwens_2020 L_VIS 12 -	G	Genes			
		8- 6- 4- 2- 0-	4- 3- 2- 1-		8- 6- 4- 2- 0-	0- 4- 2- 0	10 8 6 4- 2-				
Bhattach E	nerjee_2019 Indo MO		Lein_2007 L MO		1	Zeisel_2018 L MO		Le	in_2007 L VIS		
Dataset/region combinations as coordinates											
name 🌲 🔍	shortname 🍦 🔍	species 🌲 🐺	ensemblid 🌲 🔍	entrezid 🌲 🔍	B2019 A L_MO 🌲	B2019 E L_MO 🌲	L2007 L_MO 🌲 🔍	Y2021 L_MO 🜲	Z2018 L_MO		
tetraspanin 7	Tspan7	Mus musculus	ENSMUSG0000058254	21912	10.94	9.91	2.14	10.67	8.01		
ferritin heavy polypeptide 1	Fth1	Mus musculus	ENSMUSG0000024661	14319	11.75	11.86	0.03	10.61	12.15		
cytochrome c oxidase subunit 7C	Cox7c	Mus musculus	ENSMUSG0000017778	12867	9.67	10.05	0	7.44	10.11		
cytochrome c oxidase subunit 8A	Cox8a	Mus musculus	ENSMUSG0000035885	12868	10.68	10.97	3.23	9.76	10.91		
enolase 1 alpha nonneuron	Eno1	Mus musculus	ENSMUSG0000063524	13806	10.07	9.55	2.09	9.23	4.72		
CD81 antigen	Cd81	Mus musculus	ENSMUSG0000037706	12520	11 34	9.05	2.69	8.8	6.9		

Funding

VRVis is funded by BMK, BMAW, Styria, SFG, Tyrol and Vienna Business Agency in the scope of COMET - Competence Centers for Excellent Technologies (879730) which is managed by FFG.