
communications biology Article

https://doi.org/10.1038/s42003-024-06355-7

BrainTACO: an explorable multi-scale
multi-modal brain transcriptomic and
connectivity data resource

Check for updates

Florian Ganglberger 1,2, Dominic Kargl3,5, Markus Töpfer1,5, Julien Hernandez-Lallement2,
Nathan Lawless 2, Francesc Fernandez-Albert2, Wulf Haubensak 3,4 & Katja Bühler 1

Exploring the relationships between genes and brain circuitry can be accelerated by joint analysis of
heterogeneous datasets from 3D imaging data, anatomical data, as well as brain networks at varying
scales, resolutions, and modalities. Generating an integrated view, beyond the individual resources’
original purpose, requires the fusion of these data to a common space, and a visualization that bridges
the gap across scales. However, despite ever expanding datasets, few platforms for integration and
exploration of this heterogeneous data exist. To this end, we present the BrainTACO (Brain
Transcriptomic And Connectivity Data) resource, a selection of heterogeneous, and multi-scale
neurobiological data spatially mapped onto a common, hierarchical reference space, combined via a
holistic data integration scheme. To access BrainTACO, we extended BrainTrawler, a web-based
visual analytics framework for spatial neurobiological data, with comparative visualizations ofmultiple
resources. This enables gene expression dissection of brain networks with, to the best of our
knowledge, an unprecedented coverage and allows for the identification of potential genetic drivers of
connectivity in both mice and humans that may contribute to the discovery of dysconnectivity
phenotypes. Hence, BrainTACO reduces the need for time-consumingmanual data aggregation often
required for computational analyses in script-based toolboxes, and supports neuroscientists by
directly leveraging the data instead of preparing it.

An increasing amount of evidence suggests that human behaviors, and
their impairments in psychiatric disorders, are better understood via a
multimodal data integration approach than by analyzing individual
neurobiological measures1,2. Many insights into the brain’s functional
organization and neuronal mechanisms were sparked by collecting and
interpreting spatially organized histology, cellular composition, con-
nectivity, and activity data. For instance, the entry points for modern
neuroscientific experimental workflows are brain regions (i.e. part of a
specific neuronal circuit thought to be involved in a brain function or
behavior) whose gene expressions and functional connectivity patterns
are studied to understand the circuit dynamics underlying a behavior.
That information can then be used to identify targets in the brain that
could be modulated by psychoactive drugs, in cases of psychiatric
symptomatology3. Thus, integrating both functional connectivity and
omics data modalities is instrumental to better understanding the bio-
logical underpinnings of behaviors and their deficits4.

Recent advances in neuroimaging allowed big brain initiatives and
consortia to create vast resources5–7 of data, which could be mined for
additional anddeeper insights.However, collecting thesedata fromdifferent
sources for comparison and exploration leads to several challenges, as they
are acquired in different systems, and can vary in resolution, anatomical
scale, or sampling density. A mandatory first step is to map the data onto a
common reference space, to ensure alignment (for imaging data) and
annotation using the same brain region ontology8. In an alternative
approach, such as mapping the data to the smallest common denominator,
e.g. major anatomical brain regions9, one loses granularity and specificity,
rendering the data potentially less representative.

Neuroscience studies that use a combination of omics, imaging, ana-
tomical, and connectivity data often require extensive analytical workflows,
including mapping to a common reference space8, manual data
aggregation9, and statistical analysis. This typically requires the expertise of a
bioinformatician to find patterns that might relate to a given behavior9–16.
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The term “big” refers to the amount (vast image collections, many datasets)
and/or size (high-resolution imaging/network data) of the data, which is too
extensive to be analyzed with traditional methods. Here, visual analytics
tools bridge this gap by enabling neuroscientists to interactively browse vast
data collections, visualize complex relationships, and link different types
of data.

Many neuroscientific resources for transcriptomic data provide
interactive, web-based visualizations for access and exploration. A com-
prehensive collection of such websites has been provided by Keil et al.17.
While providing access to scientists without the need for advanced com-
putational expertise, they are primarily suited for single datasets, i.e., they
rarely provide workflows across multiple datasets and modalities. One
notable exception is the SIIBRA-Explorer via EBRAINS18 which combines
structural connectivity (fiber tracts)19 with microarray-based gene expres-
sion data20,21. Another relevant tool, although not web-based, is
BrainExplorer22,23, which enables the retrieval of structural connectivity
from the Allen Mouse Brain Connectivity Atlas24 in combination with in-
situ-hybridization data25. Nevertheless, in their current state both, SIBBRA-
Explorer and BrainExplorer, are limited to one connectivity and one tran-
scriptomic dataset each, while lacking support for next-generation
sequencing data.

In this paper, we present a holistic data integration scheme to map
heterogeneous brain data across scales, spatial and anatomical resolutions,
as well as sampling and acquisition types (Fig. 1). BrainTACO (Brain
TranscriptomicAndConnectivityData) is a resource that includes bulk and
single-cell/nucleus RNA sequencing, in-situ hybridization, andmicroarray-
based transcriptomics data, as well as structural and functional connectivity
mapped onto common hierarchical reference spaces. Tomake BrainTACO
accessible, we built onto previouswork, BrainTrawler26, a tool for visualizing
volumetric, geometry, and connectivity data simultaneously in 3D render-
ing and 2D slice views, which can iteratively integrate additional hetero-
geneous datasets from the community and across species. We extended
BrainTrawler to integrate, store and query datasets from various resources.
Via our spatial indexing-based data structure27, it enables automatic
aggregation and interactive exploration of large-scale, high-resolution
spatial connectivity7,24, and image collections of gene expression data25 on
different scales. We extended our data structure to integrate sample-based
region-level datasets (i.e. sampled from brain regions), such as microarray
gene expression data or count matrices from RNA sequencing. Here, it is
possible to aggregate samples on individual dataset-level by user-defined
regions of interest in real-time, so that different datasets can be comparedon
the sameanatomical level, independentof their original resolutionand scale.

Via a web interface, BrainTACO can be used to dissect brain con-
nectivity interactively with a wealth of transcriptomic data, similar to

Ganglberger et al.’s26 previous approach for in-situ hybridization data
only. To account for the increased number of datasets, as well as the
increased complexity of the datasets itself (e.g. samples frommultiple cell
types, developmental states, etc.), we added additional comparative
exploration functions. Here, we facilitated visualization techniques such
as heatmaps, small multiples28, and parallel coordinates to identify gene
expression patterns across datasets and categorical information (cell
types, phenotypes, developmental stage) interactivity on arbitrary levels
of anatomical detail. This enables neuroscientists a view on the data,
tailored to their research focus and without the need for programming
knowledge.

Our resource closes the gap in current interactive analytical tools by
combining gene expression, structural, and functional relationships at the
microscopic, mesoscopic, and macroscopic level. This is achieved by the
following:
• A hierarchical brain ontology-based integration scheme (i.e. brain

parcellation with standardized hierarchical region annotation) to
access neurobiological, spatially mapped data across resolution,
anatomical scale, or sampling density.

• A collection of publicly available gene expression (in-situ hybridiza-
tion, microarray, bulk and single-cell/nucleus RNA sequencing) and
connectivity (structural and functional resting-state) datasets covering
major anatomical brain regions mapped onto common hierarchical
reference spaces. The data’s original annotation is stored and made
transparent (data provenance).

• An intuitive web interface for comparative visualization to access the
BrainTACO resource in real-time without programming knowledge.

Results
Integrating multi-modal multi-scale resources
To create a resource of brain-wide gene expression and connectivity, we
mappedheterogeneousneurobiological spatial datasets tocommonmouse29

and human30 reference spaces. We included a range of single-cell/nucleus
RNA sequencing datasets (Fig. 2) covering both species. While the datasets
were representative of thewholemouse brain31–37, the gaps inhumandata (e.
g. Amygdala, Thalamus, Hypothalamus)9,35,38,39 were filled using bulk RNA
sequencingdatasets (Fig. 2,GTExandBrainSpan40,41). The includeddatasets
were selected to cover a diversity of meta information, such as morpho-
electric cell types (patch sequencing35), age information (BrainSpan41, Bat-
tacherjee at al.34, Lee et al.39, and the STAB datasets9,38,42–52), and different
treatment groups (Rossi et al.33 and Battacherjee at al.34). To increase spatial
resolution, we added in-situ hybridization data (200-μm voxel-level
resolution)25 and microarray gene expression data for 3702 biopsy
sites20,21, both already mapped to the reference spaces.

Fig. 1 | Mapping data of different resolution and
scales to a common reference space. (1) Voxel-level
data is mapped to the voxel-level reference space by
image registration. (2) Region-level data (e.g. RNA-
sequencing data) is mapped via a hierarchical brain
region ontology (i.e. standardized hierarchical brain
parcellation with region annotation) with voxel-
level parcellation to the reference space. (3) All data
mapped to the reference space can be either
retrieved on the resolution of the reference space
(data is up- or downsampled via nearest-neighbor
interpolation), or on every other region level of the
hierarchy.
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RNA sequencing datasets were leveraged using TPM (transcripts per
million) for bulkRNAsequencing, andCPM(counts permillion) for single-
cell/nucleus RNA sequencing to ensure intra-dataset comparability of gene
expression53, at the expense of inter-dataset comparability, which cannot be
assumed due to technical biases54 as well as different experimental condi-
tions and/or sequencing protocols53. To circumvent this issue, two steps
were taken. First, we limited the comparison to samples from adult subjects
to avoid confounding factors due to varying developmental stages9.

Second, inter-dataset comparability was assessed on rank level, i.e.,
whether the general order of genesby theirTPM/CPMwas consistent across
datasets. Therefore, we visualized heatmaps that show Spearman rank-
based correlation over all genes of mouse and human datasets that cover
matching brain regions and cell types (e.g. Battacherjee at al.34 and Yao et
al.36), as seen in Fig. 3. Black boxes in the heatmaps mark correlations of
matching cell types in different datasets, indicating consistent (ranking of)
gene expression. Hence, comparability of relative gene expression between

datasets can be assumed. While the comparison of co-expressed genes via
cell type and region specificity would provide further mechanistic insights
about gene regulation, this is in general limited because of the absence of
matching references (i.e. region specificity would require datasets covering
the same brain regions, cell type specificity the same cell types).

For details about the mapping of the datasets, as well as the pre-
processing and normalization, see theMethods (SectionDataMapping and
Querying and Data Preprocessing and Normalization). Supplementary
Data 2 and SupplementaryData 4 provide additional information and code.

Mapping to a common reference space
The joint explorationof spatial datasets fromdifferent resources requires the
data to be aligned to a common space8. This space acts as a reference, so that
spatial locations, such as coordinates or brain region annotations, have the
same meaning across datasets. In neuroscience, commonly used reference
spaces are typically defined by an anatomical reference template29,30, a set of

Fig. 2 | Dataset coverage over major anatomical brain regions. Numbers indicate the sample size/number of images of the datasets in the respective brain regions. Brain
region colors represent the used hierarchical brain ontologies from the Allen Institute. aMouse datasets. b Human datasets.
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Fig. 3 | Heatmaps showing the (Spearman rank-based) correlation over all genes
of mouse and human datasets that cover the same brain regions and cell types.
Black boxesmark correlations of the same cell types in different datasets. On average,
their correlation is higher than for not-matching cell types, which indicates that (the

ranking of) gene expression is consistent across datasets (one-sided Wilcoxon test,
all p-values≤0.05, except mouse visual areas). Neuronal subtypes in mouse visual
areas were already so similar within datasets (all correlation≥0.95), that there was no
significant difference across cell types.
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structural images that have been combined (e.g. via image registration) to a
complete representation of the brain for a group of specimen or a species.

Imagingdata, i.e., data that is dividedby a2D/3Dgrid intopixels/voxels
that represent measurements at their respective positions, can then be
aligned onto a template by image registration. This involves image trans-
formation and warping to establish voxel-level correspondence (Fig. 1). As
templateswe used theAllenMouseBrainCoordinate Framework29 (0.1mm
resolution) and the ICBM 152 MNI space template30 (1 mm resolution)
based on their widespread use and availability55. In principle, there is no
limitation to specific templates.

For spatial data that is not derived from imaging, i. e., measure-
ments that have only been generated for specific brain regions, a dif-
ferent approach is needed. Here, we utilized hierarchical ontologies of
brain regions, a formal representation of knowledge about species-
specific brain anatomy56 (Fig. 1), i.e., which brain regions it is composed
of and how these brain regions are subdivided (hierarchically). The
Allen Institute provides ontologies for bothmouse and human29,57,58 that
include a mapping onto our respective reference spaces, i.e., a direct
correspondence between each coordinate of the reference space to a
brain region in the ontology. Since datasets are not necessarily anno-
tated with the same ontology and on the same hierarchical level, they
cannot be compared across anatomical scales and resolution directly.
Hence, wematched brain region annotations to the corresponding brain
regions in the ontology. An outline of this process is shown in Fig. 1,
details can be found in the Methods, Section Data Mapping and
Querying. Note that these mappings are made explicit in our resource’s
user interface to ensure transparency, and as a consequence, allow for
quality control.

The distributed nature of brain functions across brain networks and
gene sets necessitated a thorough exploration of spatial gene expression in
the context of brain structural and/or functional connectivity. To this end,
we integrated high-resolution imaging data of structural connectivity (for
mouse)24 and resting-state functional connectivity (for human)7. Structural
connectivity, which describes how brain areas are physically connected via
axonal projections, was originally imaged at a 100-μm resolution24. The
human resting-state functional connectivity, on the other hand, describes
brain regions that are linked by correlated activity. This data, sourced from
theWU-MinnHuman Connectome Project7, represents the group-average
dense, voxel-level correlation of the resting-state BOLD signal of 820 sub-
jects. We selected both the mouse structural connectivity data and the
human resting-state functional connectivity data for their high resolution
and compatibility with the common reference spaces (see Section Data
Preprocessing and Normalization for more details).

Interactive access and exploration
BrainTrawler was one of the first iterations of an interactive, web-based
visual analytics framework26. Originally, it was designed to explore large-
scale brain connectivity data, such as structural connectivity24, and to dissect
these connections on gene expression level in the mouse brain. This was
achieved by providing a visual analytics workflow to identify which genes
are expressed in either the source or target regions of these connections,
based on spatiallymapped gene expression data of 20.000 genes in theAllen
Mouse Brain Atlas25. Interactivity was achieved by facilitating spatial
indexing on volumetric images59 for the spatially mapped gene expression
data, as well as developing a data structure for real-time aggregation of
connectivity data with billions of connections27.

We expand on this effort to handle large-scale transcriptomic datasets
formouse and human, to not only showwhere genes are expressed, but also
how expression differs between cell types and developmental or physiolo-
gical conditions. We therefore build a spatial database of RNA sequencing
and microarray-based gene expression datasets, including the datasets
described in the previous section. This spatial database utilizes spatial
indexing for aggregating gene expression of datasets in real time, that were
aligned to brain regions/voxels of the reference space. To this end, datasets
including their meta data (e.g. cell type annotations, age, phenotype, etc.)

were sorted basedon their spatial location in the brain (seeMethods, Section
Spatial Indexing for details).

The exploration of gene expression related to brain connections works
in an analogous manner as previously presented in Ganglberger et al.26, see
Fig. 4: First, the user defines a volume of interest (VOI), which can be either
an arbitrary manually defined area (via a brush-drawing tool), or a brain
region (Fig. 4a, yellow area). For this VOI, a gene expression query can be
performed, which computes the mean expression of all datasets that have
beenaligned to the reference spacewithin theVOI.Results canbe refinedvia
a user-defined filter, i.e., selected meta properties data such as certain cell
types, phenotypes, and others (details in the Methods, Section Data Map-
ping and Querying). This approach offers a simplified representation of
complex gene expression patterns within specific cell types and brain
regions, enabling an accessible visual analytics approach for comparing key
differences without losing essential information. To provide differential
gene expression insights in relation to other cell types or the whole brain,
cell-type-specificity (i.e. gene expression of a cell type vs other cell types) and
region-specificity (i.e. gene expression of a VOI vs the whole brain) queries
can also be applied, offering a more comprehensive understanding of the
gene expression landscape (see Section Data Mapping and Querying for
details).

The result of such a queries are lists of genes with the aggregated gene
expression. Figure 4c shows how multiple queries results can then be
compared in a parallel coordinate system, which allows filtering multiple
gene lists by their gene expression. Each axis in the figure represents the
result of a gene expression query, and, as a consequence the level of gene
expression in thequery regions. Eachplot line represents a gene.A selection/
filtering of genes (shown in the table in the lower part of Fig. 4c)with specific
gene expression patterns can be made drawing brushes on an axis. Since
queries of different VOIs can be compared, one can use this on the source
and target areas from connectivity data for gene expression dissection.
Figure 4a, b shows the aggregated outgoing structural connectivity of the
VOI in red.While the yellowVOI in Fig. 4a represents the source, the yellow
area in Fig. 4b represents the (strongest) targets of the aggregated connec-
tions. A comparison of the gene expression of source and target VOI can be
seen in Fig. 4c. Here, the axes labeled in red are results of gene expression
queries at the source VOI, green ones at the target VOI, performed for
different exemplarily selected datasets and cell types.

The increase in available datasets and their inherent complexity (e.g.
samples from multiple cell types, developmental states, etc.) makes it
necessary to perform large amount of expression queries to cover all
available information for genes of interest. Hence, we extended Brain-
Trawler’s capability to visualize gene expressionofmultiple resources jointly
by developing a lightweight interface (BrainTrawler LITE). BrainTrawler
LITE’s basic user interface element is a heatmap of the dataset coverage
(Fig. 5a). Each heatmap tile represents the sample size/image quantity dis-
tribution of a certain dataset (rows) for a certain brain region (columns),
similar to Fig. 2. By clicking on a heatmap tile, these data can be selected for
further investigation: Either on a gene set level, by entering a list of genes
(Fig. 5b), or on a genome-wide level (Fig. 5c), analogously to a gene
expression query. Results can be exported as images or as tabulated text files
for later use or for sharing. For more details see Methods, Section Brain-
Trawler LITE.

Relating gene expression and connectivity across species
uncovers genes and mechanisms for human functional
connectivity
The functional (FC) and structural connectivity (SC) of the brain are viewed
as a major determinant of cognitive function across species. Altered con-
nection topology and intensity of brain areas commonly correlate to psy-
chiatric conditions such as the autism spectrum and schizophrenia,
suggesting that dysconnectivity might lie at the core of these conditions60–62.
Alongside, genome-wide association studies have discovered genetic loci
and polymorphisms associatedwith these psychiatric conditions, indicating
that the relationship between the connectivity of a given brain area and its
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gene expression likely harbors valuable information on wiring principles of
the brain63,64. Tobridge these domains, the combinationof connectomic and
gene expression data is a promising approach to discover genetic etiologies
and emerging mechanisms that drive regional efferent and afferent con-
nectivity underlying connectopathies, conditions associated with aberrant
brain connection topology65.

The increasing abundance of (cell type specific) gene expression and
connectivity data in the mouse is a promising avenue to discover genetic
susceptibilities and mechanisms affecting the connectome, with great
translational potential. Thus, identifying genetic drivers of FC in humans is
of great interest, as it may provide entry points into therapeutic interven-
tions to ameliorate disease burden.

In the context of psychiatry, the insular cortex is of special interest as a
corehub in regulating large-scalebrainnetworks inhumans66 and rodents67It
is also involved in interoceptive, cognitive and affective processes68,69.
Notably, insular functional dysconnectivity is an indicator of common
psychiatric conditions70,71. We segmented the insula into its agranular and
granular portions, as they are anatomically and functionally distinct72.While
theposterior granular insula (GI) is aprimary sensoryareawith richafferents
for interoceptive information, the anterior agranular insula (AI) represents
an associative area with increasing multimodal integration68. Therefore, this
system is an ideal model area to discover novel genetic factors shaping the
connectivity of cortical areas of distinct architecture (agranular vs granular
insula), in a highly relevant translational setting.

First, to allow for optimal cross-species inferences, we selected con-
sensus areas between the rodent and human brain, covering 10 major
subcortical regions (Supplementary Data 5). Next, source and target con-
nectivity data with these areas were sampled for the AI (combined
”L_Agranular insular area, dorsal part” and ”L_Agranular insular area,
ventral part”) and GI (”L_Visceral area”) (Supplementary Fig. 1, left).
Because the human Allen Brain Atlas (ABA) does not discern by granu-
larity, human FC data for AI andGI with the consensus areas were sampled
by brushing agranular and granular areas of the short and long insular gyri
(Supplementary Fig. 1, right, according to73.Within-species analysis shows a
correlation between source and target SC in themouse GI, but not in the AI
(Fig. 6a). Overall, AI and GI connectivity is correlated in rodents and
humans (Supplementary Fig. 1a), although to different extents between
sources and targets. As expected, humanFC is not significantly correlated to
mouseSC, suggesting relevant functionaldifferences between speciesand/or
connection modality (Fig. 6b).

To assess the relationship between gene expression and con-
nectivity, we extracted expression data of major excitatory and inhi-
bitory cell types of the 10 subcortical consensus areas for which
expression data is available from Zeisel_201837 (Mouse) and
Hawrylycz_2012.20,21 (Human) (Supplementary Data 5). These were
correlated with FC and SCwithin humans andmouse, respectively (see
Supplementary Data 6 for Top and Bottom 1% correlated genes). To
identify potential basic driver genes for insular connectivity (i.e. those

Fig. 4 | Exemplary gene expression dissection of a structural connection, show-
casing the process of defining volumes of interest (VOI), analyzing structural
connections, and comparing gene expression patterns. a Outgoing structural
connections (red) from a user-selected part of the Thalamus (yellow), representing
the source VOI of the connection. This VOI can be an arbitrary manually defined
area or a specific brain region. b Target VOI (yellow) of the structural connections
(red), representing the strongest targets of the aggregated connections. c Gene
expression comparison in a parallel coordinates system for sourceVOI (red axes, one
for astrocytes in the Zeisel_201837 dataset, one for gene expression in the Lein_2007

dataset) and target VOI (green axes, gene expression in the Lein_2007 dataset,
Astrocytes in the Battacherjee_201934 and Yao_2020 datasets36) using different
datasets and cell types. Each horizontal line represents a gene, with its position on the
axes indicating the level of gene expression. The axes represent the results of gene
expression queries, allowing for comparison and filtering of multiple gene lists. An
example subset of genes with low astrocytes expression in the source VOI and high
astrocytes expression in the target VOI is selected, demonstrating the potential for
gene expression dissection of structural connections.
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conserved across the available mouse structural and human functional
connectivity data), we determined the overlap between human and
mouse datasets. This resulted in a total of 26 genes for AI (Fig. 6c, left)
and 21 genes for GI across mouse sources and targets (Fig. 6c, right; see
Supplementary Fig. 2 for source- and target-specific analysis and
Supplementary Data 7). Association analysis for brain-related cate-
gories on these genes in Open Targets 74 suggests that they are involved

in processes relevant to psychiatric conditions (Fig. 6d). In this con-
text, our workflow recovered several genes previously associated with
autism (AI: 4 genes; GI: 2 genes) and schizophrenia (AI: 8 genes; GI: 6
genes) (see Supplementary Data 8). Among the positively correlated
we find attractin-like 1 (ATRNL1) specifically for AI, a gene previously
found to be mutated in a human patient diagnosed with autism75. The
estrogen receptor 2 (ESR2), which is among few genes with a link to

Fig. 5 | BrainTrawler LITE interface for comparative visualization of gene
expression across datasets. a The dataset coverage heatmap shows the distribution
of sample size/image quantity across brain regions (columns) and datasets (rows),
subdivided by meta data attributes such as cell types, phenotypes, etc. Brain regions
and meta data categories can be adapted via tree-like UI elements on the sides, the
tooltip shows the exact composition (sample/image count,meta data categories, etc.)
of the respective heatmap tile. Orange tiles shows a selection of data for gene
expression visualization (in b, c). bGene expression heatmaps of five selected genes.
Rows and columns represent the selected (orange) tiles in the dataset coverage

heatmap (in a). Color scales are separated per dataset (between 0 and the maximum
value shown for all selected genes). The right side shows the expression of genes for
each dataset separately as small multiples, the left side shows one selected gene with
more details (labels, values, etc.). Gray tiles are missing data. c Parallel coordinates
system showing the gene expression of all genes in the selected dataset on axes, each
representing the average expression of genes (blue lines) of the samples/images of
each selected (orange) tile in the dataset coverage (in a). Via drawing brushes on the
axes, the genes in the parallel coordinates system can be filtered. Filtered genes are
shown below in a table.
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schizophrenia, was found to have switched from a strong positive
correlation for AI (sources) in mouse to a strong negative correlation
in humans (Supplementary Data 8). We also detected several genes
previously not linked to brain-related disorders, potentially

identifying novel genetic factors that contribute to dysconnectivity
phenotypes.

It is established that brain oscillations are governed by recurrent
inhibitory networks76, suggesting that genes expressed in inhibitory neurons

Fig. 6 | Relating regional gene expression with connectivity across species iden-
tifies potential connectivity driver genes, where cell-type-specific analysis reveals
a conserved inhibitory mechanism across species and connection modality.
aMouse source and target connectivity is significantly correlated for GI (Spearman
r = 0.65, p-value = 0.04), but not for AI (r = 0.08, p-value = 0.82). bMouse SC source
and target connectivity are not significantly correlated toHuman FC (Spearman; AI:
source r = 0.22, p-value = 0.54, target r = 0.22, p-value = 0.54; GI: source r = 0.22,
p-value = 0.54, target r =− 0.05, p-value = 0.89). c Overlap of respective top and
bottom 1% of genes correlated to connectivity across species (Mouse SC source/
target and Human FC). d Brain-related associations of overlapping genes in c (total
of 26 genes for AI, 21 genes for GI; see Supplementary Data 7 for summary).
eCumulative distribution of correlation coefficients resulting from the correlation of

cell-type-specific gene expression and Mouse SC (sources/targets) across excitatory
and inhibitory cell types for AI and GI. Kolmogorov–Smirnoff tests revealed sig-
nificant differences for AI and GI (p-value ≤0.0001) between excitatory and inhi-
bitory cell types for within source and target connectivity, respectively. In addition,
significant differences (p-value ≤0.0001) between source and target connectivity
within excitatory and inhibitory neurons, respectively, were found for both AI and
GI. f Selection of correlation coefficients of human genes with homologs in the top/
bottom 1% correlated genes in the mouse. Analysis is based on direction of corre-
lation in the mouse dataset (top: Top 1%, bottom: Bottom 1%), mouse SC type (left:
Sources, right: Targets), cell type of origin (color) and connected region (AI, GI).
Significance was tested by one-sample t-test against zero (chance level). *p-value ≤
0.05, **p-value ≤ 0.01, ****p-value ≤ 0.0001.
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might drive FC. To address this systematically, we harnessed the available
cell-type-specific gene expression data in the mouse as an entry point. We
extracted gene expression data of excitatory and inhibitory cell types from
the 10 consensus areas in the mouse using the “Cell type specificity” query
(SupplementaryData 5). This approach emphasizes cell-type-specific genes
and thus enhances contrast between cell types. We then correlated this
expression data to the mouse SC of AI, and GI (sources and targets) to the
consensus areas. Interestingly, we found that there is a shift of correlation
coefficients obtained towards negative correlations in genes expressed in
inhibitory neurons (Fig. 6e). This suggests that inhibitory mechanisms by
inhibitory neurons might shape mouse SC.

We then tested their negative correlation in human FC. This is most
dominant for genes negatively correlating with mouse source connectivity
(Fig. 6f, top left), and specific toAI for genes frommouse target connectivity
(Fig. 6f, top right). Interestingly, for mouse SC positively correlated genes,
the direction of correlation is inverted and specific toGI/inhibitory neurons.
Thismay indicate important differences between species and/or connection
modality (Fig. 6f, bottom).Among the strongest candidateswe found isTNF
superfamily member 12 (TNFSF12), a gene dysregulated in patients diag-
nosed with various psychiatric disorders77–79.

In summary, despite the fact that Human FC and mouse SC are not
correlated (Fig. 6b), this workflow uncovered some preserved relationship
between gene expression and connectivity across species and connection
modality. Therefore, this workflowmay allow to further mine data for (cell
type specific) genes and mechanisms driving FC in humans.

Discussion
We created a discovery framework that utilizes data from current popular
large-scale genetic and brain network initiatives to rapidly screen for
neural circuitry underlying specific brain functions, behaviors, or psy-
chiatric symptoms at comparably low computing costs. Our platform has
several implications for both basic and biomedical research, and may
directly impact subsequent, circuit-genetic experiments such as electro-
physiology, opto-, and pharmacogenetics. When performed at large scale
with behavior-specific genes, our approach has the potential to refine
knowledge about the functional organization of the brain beyond simple
anatomical domains. Importantly, our methodology for generating and
exploiting data resources could be applied to other model organisms for
which spatially mapped gene expression, network, and genetic informa-
tion is, or will be, available, for example fruit flies or zebrafish. Using our
platform, we showcase this by uncovering a preserved relationship
between gene expression and connectivity across species and connection
modality. We explored excitatory and inhibitory cell types, and identified
several genes that were previously not linked to brain-related disorders,
potentially identifying novel cell-type specific factors that contribute to
dysconnectivity phenotypes.

Inevitably, BrainTACO has some limitations. First of all, in its current
state it does not cover the full brain on a single-cell/nucleus level. To provide a
resource as versatile as possible, we focused on covering the brain at least the
level ofmostmajor anatomical brain regions, so thatneuroscientistswill likely
finddata related to their own research focus. Thiswasnot entirely possible for
human datasets (e.g. Amygdala, Thalamus, Hypothalamus) due to a lack of
studies covering these areas. In principle, BrainTACO isnot static, and canbe
extended with new datasets. Future studies, as well as further improvements
of technologies, such as spatial transcriptomics, will help to close this gap.

Another limitation is that it is in general not reasonable to compare
(absolute) gene expression values, even normalized ones (e.g. TPM,
CPM) across datasets53,54, especially with respect to batch effects. We
circumvent this issue by providing dataset-specific color scales for gene
expression heatmaps, and advise to compare absolute gene expression
only relative to other genes within the same dataset. As an alternative, we
provide gene ranks for gene expression queries, i.e., their relative posi-
tion in a list of genes sorted by their expression. This relative measure, in
terms of how is a gene’s expression ranked relative to all other genes for a
certain cell type/brain region, acts as a normalization to adjust for batch

effects and other sources of technical variation, but may not completely
eliminate them.

Furthermore, the computed mean expression, region and cell type
specificity, or enrichment scores do not include information about the
spreadof thedata,which is typical for traditional analytical approaches, such
as t-SNE plots. Hence, it is not known how homogenous the expression is
across the selected datasets, for example for a certain cell type. This lim-
itation of analytical power greatly increases the ease of use of the platform, a
cornerstone of BrainTrawler, whose mission is to enable computationally
agnostic neuroscientists to run complex analysis. Nevertheless, an integra-
tion of more sophisticated, in-depth analyses methodsmight be considered
for future releases.

The user interface provided sufficient visualizationmodes for the scope
of our case studies, i.e. the number of queries, datasets and genes was well
within BrainTrawler’s capabilities. In general, there is no limit regarding
how many genes, datasets or query results can be visualized, but outside
typical analytical workflows, such as our case study, there are some practical
limitations within our user interface: The parallel coordinates system does
not scale well to more than twenty queries, due to space constraints in a
typical browser window. The same is true for visualizing the expression of
hundreds of genes in BrainTrawler LITE’s gene expression heatmaps, since
the overall context might be lost when the visualization does not fit on one
screen and scrolling is needed.

Overall, the integration of heterogeneous gene expression and con-
nectivity data from mouse and human into BrainTrawler is a powerful
resource for hypothesis building in the field of behavioral/functional neu-
roscience and for drug target identification. Its coverage of RNA sequencing
data, especially on a single-cell/nucleus level for the majority of brain
regions, only limited by the public availability of the data, enhances Brain-
Trawler’s capabilities of investigatingmolecularmechanisms.Bymaking the
BrainTACO resource available via a web-based visual analytics workflows,
we enable quick access without manual data aggregation via scripting, and
consequently without needing the expertise of a bioinformatician. Future
integration of novel spatial datatypes, such as spatial transcriptomics, have
the potential to make this resource even more versatile.

Methods
Data preprocessing and normalization
Single-cell/nucleus RNA sequencing data. We integrated 21 single-
cell/nucleus RNA sequencing datasets in total, 7 mouse datasets, and 14
human. Out of the 14 human datasets, 12 are from the Song et al.9 meta
dataset STAB available from http://stab.comp-sysbio.org. STAB consists
of 13 datasets38,42–52, of which we omitted the dataset by Hodge et al.38 and
downloaded the data from Hodge et al.’s original resource (http://
celltypes.brain-map.org/rnaseq), since it had been extended by several
brain regions after STAB’s submission (primary motor cortex, primary
somatosensory cortex, and primary auditory cortex). The other single-
cell/nucleus RNA sequencing datasets were obtained via the data avail-
ability statements in their referenced publications.

STAB datasets were not further preprocessed, filtered or normalized,
since this has already been done consistently across all 12 datasets9. The
remaining single-cell/nucleus RNAsequencing datasets were pre-processed
with the Seurat (v4.1.0) R package80 to remove batch effects. Low-quality
cells, empty droplets, and doublets were removed by filtering out low (less
then 50) or high (more than 5000) unique gene counts, or if their unique
gene counts were identified as outliers (five times lower or higher than the
mean absolute deviation from the median). Final cell counts can be seen in
Table 1 (Filtered Cell Counts). Note that most available datasets were
already filtered by similar criteria, which explains the high similarity of
original and filtered cell counts. Cells that could not be matched to brain
regions were removed, whichwas only the case for samples from themedial
ganglionic eminence (transient structure in the developmental brain) in the
Nowakowski et al.42 data from STAB.

Genes without cell counts across the datasets where removed, since
they do not show biological variability. Genes were then matched by gene

https://doi.org/10.1038/s42003-024-06355-7 Article

Communications Biology |           (2024) 7:730 9

http://stab.comp-sysbio.org
http://celltypes.brain-map.org/rnaseq
http://celltypes.brain-map.org/rnaseq


symbol, Ensembl ID or Entrez ID to BrainTrawler’s gene database, which
was obtained via theGenomewide annotation formouse81 and human81 via
the bioconductor package. The amount of matches can be seen in Table 1.
For each gene, expression levels were normalized by computing CPM
(counts per million) to ensure intra-dataset comparability of gene
expression53. For better readability/interpretability, CPM was log2 nor-
malized (using an offset of 1 to account for zeros).

Bulk RNA-sequencing data. To fill gaps in subcortical single-cell/
nucleus RNA sequencing data for the human, we integrated two bulk
RNA sequencing datasets from the GTEx and BrainSpan consortia40,41.
GTEx data was downloaded from the GTEx portal (https://gtexportal.or)
in version 8 as gene TPM (transcripts per million). BrainSpan data was
obtained from the BrainSpan portal (https://www.brainspan.org/) as
normalized RPKM (reads per kilobase of transcript) expression values,
and converted to TPM according to Zhao et al.53. We applied log2 nor-
malization (using an offset of 1 to account for zeros) to both datasets,
similar to single-cell/nucleus RNA sequencing data processing.

Microarray gene expression data. Microarray gene expression data
was retrieved from the Allen Human Brain Atlas by Hawrylycz et al.20,21

via the Allen Brain Atlas API. This data assembled gene expressions from
3702 samples of six donors, labeled with their according brain region in
the ontology provided by the Allen Institute57, which ensures equivalent
scaling across donors.Wenormalized gene expression values based on an
outlier-robust sigmoid function, before rescaling the normalized values
to a unit interval (0-1), as suggested by Arnatkevičiūtė et al.82.

In situ hybridization data. Whole-brain gene expression in-situ hybri-
dization data was retrieved from the Allen Brain Atlas API as volumetric
images for 19479 genes. To create these volumetric images, the Allen
Brain Atlas divided the in-situ hybridization slice images on cellular
resolution into a 200-μm resolution grid. For each grid division,
expression energy was computed, i.e. the sum of the expression intensity

of all pixels within the division, divided by the sum of pixels within the
division83. The expression energy for all grid divisions can then be seen as
a 200-μm resolution volumetric image. To make this data available in
BrainTrawler, we log2-normalized the data and encoded them as 8 bit
volumes, with a size of 155KB each (~3GB in total).

Structural connectivity data. Structural connectivity was generated
similar to previous publications26,27,84. Here, the connectivity was retrieved
from the Allen Brain Atlas API as volumetric images, showing structural
connectivity of 2173 injection sites to their target sites24. These 2173 images
were generated on a 100-μm resolution by labeled rAAV tracers via serial
two-photon tomogagraphy24. For each image, the injection site is given by
coordinates in the reference space defined by the Allen Mouse Brain Coor-
dinate Framework29, and an injection volume, depicting the volume around
the injection site affected by the tracer. Hence, the connectivity for an
injection site is defined by all voxels within its injection volume. For every
voxel in the reference space, we took the connectivity from the covering
injection volume. If a voxel was covered by multiple injection volumes, and
therefore by multiple injection sites, we combined them by taking the
maximum connectivity for each target. To compensate for low count of
injection sites on the left hemisphere, we mirrored the connectivity, effec-
tively doubling the original 2173 injection sites to 4346. To minimize the
amount of false positive connections, the data was thresholded by values
<10−4.5 according to Oh et al.24, Extended Data Figure 7. The result was a
dense ~67,500 × 500,000 structural connectome (~67500 source voxels,
covering injection volumes with ~ 500,000 target voxels within the mouse
brain), with ~90GB stored in a csv format.

Resting-state functional connectivity data. Resting-state functional
connectivity data was downloaded from the WU-Minn Human
Connectome Project7 via the ConnectomeDB (https://db.
humanconnectome.org/). We specifically chose the human resting-state
functional connectivity data over the structural connectivity diffusion
tensor imaging data provided by the Human Connectome Project7,

Table 1 | Original Cell Counts of the retrieved datasets, filtered cell counts after preprocessing, and genes matched to
BrainTrawler’s gene database

Dataset Species Original Cell Counts Filtered Cells Counts Matched Genes

Gokce_2016 Mouse 1208 1208 17077

Campbell_2017 Mouse 20921 14995 29579

Rossi_2019 Mouse 20194 19391 23613

Bhattacherjee_2019 Mouse 35360 35360 15720

Yao_2021 Mouse 74974 74676 36549

Gouwens_2020 Mouse 4270 4067 34846

Zeisel_2018 Mouse 160796 135626 22752

Lee_2020 Human 125468 70718 30191

Hodge_2019 Human 49417 47432 40180

Song_2020_Nowakowski_2017 Human 4261 921 23830

Song_2020_Darmanis_2015 Human 466 416 23830

Song_2020_Zhong_2018 Human 2394 2005 23830

Song_2020_Fan_2018 Human 4664 3916 23830

Song_2020_Li_2018_Part1 Human 1512 701 23830

Song_2020_Li_2018_Part2 Human 17093 16840 23830

Song_2020_Lake_2017 Human 36166 33862 23830

Song_2020_La_Manno_2016 Human 1977 1869 23830

Song_2020_Habib_2017 Human 11859 10747 23830

Song_2020_Welch_2019 Human 40453 39447 23830

Song_2020_Liu_2016 Human 276 252 23830

Song_2020_Onorati_2016 Human 1608 476 23830
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because it was more readily preprocessed and provided higher resolution
than region-level85, better showcasing the capability of BrainTrawler to
support even voxel-level connectivity. The datawas available as an average
functional connectivity matrix of 820 subjects, given as a dense
~90,000 × 90,000 functional connectome in “grayordinate” space7, where
a grayordinate is either a voxel (subcortical graymatter) or a surface vertex
(cerebral cortex). The Human Connectome Project provides the cortical
surface (vertices) of the 152 MNI template30 in grayordinate space.
We used the Connectome Workbench platform7 to extract the
surface vertices coordinates in MNI space (see script getVox-
elAndVerticesToMNISpaceMapping.m provided in Supplementary
Data 1). To finally map the functional connectivity matrix to our 1mm
resolution ICBM 152 MNI space template reference space, we assigned
every voxel of the template with the closest cortical surface vertex coor-
dinate or subcortical voxel coordinate. This resulted in a dense
~87,000 × 87000 functional connectome, with ~45GB, stored as csv.

Data mapping and querying
Imaging data shown in this paper, namely in-situ hybridizationdata25, axonal
projection connectivity24 and resting state functional connectivity7 was
already aligned to the reference spaces used for this resource29,57,58. Novel
datasets can be aligned via tools such as theQUINTworkflow86 or the ANTS
frame work87. Data that does not meet the resolution of the reference space,
can be up- or downsampled via nearest-neighbor interpolation. This was the
case for the in-situ hybridization data, which had a lower resolution (200 μm)
than the Allen Mouse Brain Coordinate Framework29 (100-μm resolution).

Region-level data, such as microarray gene expression data and RNA
sequencing data are typically encoding gene expression as count matrix88,
reporting the frequencyof gene transcripts for samples. For dataset included
in this study, these samples originate from brain regions. We manually
mapped these brain regions to the corresponding brain regions of our
reference ontology (AllenBrain InstituteAtlases), based on the region name
and description in the dataset’s reference publications. To ensure trans-
parency, and hence quality control, the detailed mappings are available in

the resource’s user interface (Browse Database, then select a dataset to see
details such as the dataset’s mapping), and in the supplemental material.

The process of mapping region-level data to, and retrieving it from a
reference space is outlined exemplarily in Fig. 7. Code for the mapping
can be found in Supplementary Data 1. In this example, data are samples
from the Thalamus andHypothalamus (Fig. 7a). Since the ontologymaps
to the corresponding voxels of the reference space, each voxel can be
related to samples that originated from the voxel’s brain region.
The hierarchical nature of the ontology enables the querying of gene
expression on multiple anatomical levels. For example, querying the
average gene expression in the Diencephalon, the parent region of Tha-
lamus and Hypothalamus, will aggregate over all samples of the count
matrix (Fig. 7b), while a query on the Thalamus or a subregion of the
Thalamus (e.g. Dorsal Thalamus) will result in an aggregation over the
thalamic samples (Fig. 7c). We want to point out, that thalamic samples
do not necessarily represent dorsal thalamic samples, hence we make the
samples origin explicit in our resource’s user interface (Fig. 5a, “Sample
Region Annotations”).

We implemented four different variants of gene expression queries to
cover different use cases, such as region-specificity or enrichment. These
queries were defined on a gene expression matrix of dataset d as

Md ¼ ðmd
g;sÞg2G;s2S;M

d 2 RjGj× jSj ð1Þ

where each row represents a gene g∈G and each column a sample (or a
voxel in case of imaging data) s∈ S. V⊆ S represent all samples within the
VOI, C⊆ S samples of a certain cell type, and F⊆ S a samples filtered by
meta data other than cell types.

Mean expression query. Computing the mean gene expression within
the VOI for each gene g

meanexpressionðgÞ ¼ 1
jV \ C \ Fj

X

s2ðV\C\FÞ
mg;s ð2Þ

Fig. 7 | Mapping of exemplary RNA sequencing
data to, and retrieving from a common
reference space. a Samples of the Thalamus (green)
and Hypothalamus (brown) of an exemplary RNA
sequencing count matrix are mapped manually to a
brain regions in an hierarchical ontology via litera-
ture research. Since mapping of the ontology to the
reference space is known, samples can be mapped to
individual voxels of the reference space, and hence to
every anatomical level in the ontology.bAggregating
the average gene expression for all samples from a
coarser anatomical level (Diencephalon) than the
original annotations (Thalamus and Hypothala-
mus). c Aggregating the average gene expression for
all samples from a equal or finer anatomical level
(Thalamus or Dorsal Thalamus) than the original
annotations (Thalamus) leads to the same results.
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Region specificity query. To account for regional specificity, we com-
pute for each gene g the mean gene expression within the VOI, and
normalize it to the mean expression of the rest of the brain:

regionspecificityðgÞ ¼
1

jV\C\Fj
P

s2ðV\C\FÞmg;s
1

jC\Fj
P

s2ðC\FÞmg;s
ð3Þ

Cell type specificity query. This query can be used to see how specific
the expression of a certain cell type is. In this case, for each gene g, the
mean gene expression within the VOI is computed for all samples of a
certain cell typeC⊆ S, and normalized by the expression over samples of
all cell types within the VOI:

celltypespecificityðgÞ ¼
1

jV\C\Fj
P

s2ðV\C\FÞmg;s
1

jV\Fj
P

s2ðV\FÞmg;s
ð4Þ

Enrichment query. This query can be used to see how specific the
expression is for cell typesC⊆ S or different meta data F⊆ S. In this case,
the mean gene expression within the VOI is computed for all samples of
the selected filter and cell type, and normalized by the expression over all

samples within the VOI:

enrichmentðgÞ ¼
1

jV\C\Fj
P

s2ðV\C\FÞmg;s
1
jVj

P
s2ðVÞmg;s

ð5Þ

BrainTrawler LITE
The basis of BrainTrawler LITE is the dataset coverage heatmap,
showing the distribution of samples/images across brain regions (col-
umns) and datasets (rows), subdivided by metadata categories such as
cell types, phenotypes, etc. (Fig. 5a). Regions can be dynamically set via a
tree-like structure showing the brain ontology (Fig. 5a, left). Datasets can
be subdivided by theirmetadata categories (e.g. split by cell types, Fig. 5a,
right), so that the rows do not only represent datasets, but also subsets
thereof, e.g. a row for each cell type per dataset. Hovering over the
individual tiles of the heatmap reveals a summary of the data for the
respective brain region and dataset (or subset), for example sample
count and the original region annotation of the data. The original region
annotation is especially relevant to identify the data’s origin, and hence,
the data’s potential relevance for the user.

In our first example (Fig. 5b), one gene expression heatmap is gener-
ated for each of the entered genes. Here, a gene expression heatmap shows

Fig. 8 | Concept of how a selection in the dataset coverage heatmap transfers to
gene expression heatmaps and the parallel coordinates system. Each tile repre-
sents a subset of the resource, i.e., samples/images of a certain brain region of a
certain dataset (and of a certainmeta data category). Each selected tile (orange) has a

direct representation as tile in the gene expression heatmap (a) and as axis in the
parallel coordinates system (b). The values in (a) and (b) are the averaged expression
values (e.g. CPM, TPM, etc.) over all samples/images represented by the selected tile.
Tiles without samples (missing data) are rendered gray in (a), or omitted for (b).

https://doi.org/10.1038/s42003-024-06355-7 Article

Communications Biology |           (2024) 7:730 12



the averaged expression for all samples/images covered by each of the
selected tiles in the dataset coverage heatmap. This means, that if the user
selects a tile in the dataset coverage heatmap of a certain brain region, and a
certain cell type of a certain dataset, each gene expression heatmap will
contain the same tile, showing the averaged expression of all the tile’s
covered samples/images (Fig. 8a). To deal with gene lists with dozens of
genes, we used a small multiples visualization28, (Fig. 5b, right) so one can
visually identify patterns while maintaining an overview. Clicking on
individual gene heatmaps will show a detailed view on the left-hand side
(Fig. 5c, left) displaying the exact expression values and row/column labels.
The coloring is set by individual color scales per dataset (same color, but the
rangedepends on thedatasetsmaximumvalue), since, as alreadymentioned
before, values are not directly comparable across datasets.

In the case of investigation on a genome level (Fig. 5c), a parallel
coordinates system is used analogue to the dissection of connections shown
in Fig. 4. Here, each plot line represents a gene, indicating the averaged
expression along axes for each selected tile (Fig. 8b). Genes can be filtered by
brushing along an axis (Fig. 5c) to find genes with specific gene expression
patterns.

Spatial Indexing
Real-time queries on the resource’s data was achieved by spatial indexing,
depending on the datatype:
• Connectivity data: For real-time aggregation of connectivity data with

billions of connections, we used the data structure introduced by
Ganglberger et al. in 201927. The high query speed is reached by sorting
rows and columns of a connectivity matrix by their location in space
along a space filling curve89, so that rows and columns that represent
connections that are close together in the 3D reference space are also
close together on thematrix axes.Thismakes reading local connectivity
(e.g. the connectivity of a brain region) from the hard-drive extremely
efficient, since it benefits from read-ahead paging of the operating
system to reach near-sequential reading speed27.

• Imaging data: For computing the mean expression of a volume of
interest (VOI), for example a brain region, we used spatial indexing on
volumetric images similar to Schulze59. Here, the imaging data are not
stored per image, but per voxel: For each voxel in the reference space,
the data of all images at the voxel’s position are stored together (i.e. on
the physical hard-drive). Furthermore, we order these per-voxel data
along a spacefilling curve89, which allows data points in close proximity
in the 3D reference to be stored in close proximity as well on the
storage. The expression of the voxels of a VOI can then be read block-
wise from the hard-drive, which is more efficient than reading each
image individually due to read-ahead paging of the operating system59.

• Sample-based data: For sample-based data, such as RNA sequencing
andmicroarray gene expression data, we used a similar approach as for
imaging data. Here, for each sample in our resource, we used the
sample’s mapping to the reference space (Section Mapping to a
common reference space) to get the sample’s location. Based on these
locations, we ordered samples along a space-filling curve and stored
them on the hard drive. Thismeans, that if a certain VOI is queried for
gene expression, all relevant samples of all datasets are stored close-
together.As a consequence, they canbe retrievedblock-wise, benefiting
from read-ahead paging of the operating system similar to the
connectivity and imaging data approaches. We further optimized the
queries by pre-aggregating samples with similarmeta data, i.e. samples
of the same dataset, cell type, age category, etc. This increases the query
speed, since the amount of data that need to be aggregated on-the fly is
reduced from thousands of individual samples to a tenth or even a
hundredth of it (depending on the extent of the query).

Data availability
BrainTrawler, including the BrainTACO resource, can be publicly accessed
via braintrawler.vrvis.at.Allmeans to set up a customBrainTrawler instance
(including a Docker image) is available at Zenodo (https://doi.org/10.5281/

zenodo.10400999). This does not include the 3rd party gene expression or
connectivity data. All code to include these data, as well as custom datasets
into BrainTrawler is provided in Supplementary Data 1, see Section Code
Availability for details.

Code availability
The software to operate BrainTrawler consists of a multitude of services,
including spatial indices for gene expression and connectivity, a graph
database, a web interface, and an API to handle individual parts26. Hence,
making the code open-source does not necessarily guarantee that it can be
easily used by others. However, we believe that providing a publicly acces-
sible, free to use instance of BrainTrawler/BrainTACO (braintrawler.vrvis.
at), as well as all means to operate a custom BrainTrawler instance (see
Section Data Availability) serves the scientific community best, as it allows
researchers to leverage the data without the need for extensive technical
knowledge. The code for the mapping and data generation of all gene
expression or connectivity data of the BrainTACO resource is provided in
Supplementary Data 1. In combination with the provided Docker image
(see SectionDataAvailability), it is possible to reproduce the public instance
running at braintrawler.vrvis.at, as well as to include one’s own custom
datasets. However, setting up a separate BrainTrawler instance may not be
the most efficient approach for most researchers. VRVis, as a not-for-profit
research center, is open to providing support in setting up a BrainTrawler
instance in the scope of a research collaboration and is committed to further
developing and improving the system to better serve the scientific com-
munity.Wewelcome initiatives for joint research and development projects
and generally provide the software within these projects free of charge.
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